|
|
|
|
| | | 框架如下 PING程序 A.使用的SOCKET接口 1. socket 2. sendto 3. recvfrom B.PING地址:127.0.0.1 TCP/IP協(xié)議棧: 1. IP層 2. ICMP層 很可惜,在這次學(xué)習中沒(méi)能深入路由表的檢索中~,感覺(jué)還需努力哈~ 希望大家推薦一些路由算法的資料或者書(shū)籍 T ^T 不要太深~ 夠PING使用就行了~ 選擇PING本機是因為能了解收發(fā)的過(guò)程,同時(shí)也除去了對網(wǎng)卡硬件的了解的限制,在最小程度下了解TCP/IP協(xié)議棧的基本工作原理 在文中有對TCP/IP協(xié)議棧理解不足和錯誤的地方,請大家一定要拍磚指正 = 3= 萬(wàn)分感謝 好~ = 3=)/ 首先來(lái)看看PING程序 下面這段PING程序來(lái)自網(wǎng)上,感謝這位梁生的無(wú)償奉獻 = 3=)/ 我稍微做了一下修改,可能不大美觀(guān)和嚴謹,C語(yǔ)言編程功夫還需提高啊 | /*********************************************************** * 作者:梁俊輝 * * 時(shí)間:2001年10月 * * 名稱(chēng):myping.c * * 說(shuō)明:本程序用于演示ping命令的實(shí)現原理 * ***********************************************************/ #include <string.h> #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <arpa/inet.h> #include <sys/types.h> #include <sys/socket.h> #include <unistd.h> #include <netinet/in.h> #include <netinet/ip.h> #include <netinet/ip_icmp.h> #include <netdb.h> #include <setjmp.h> #include <errno.h> #define PACKET_SIZE 4096 #define MAX_WAIT_TIME 5 #define MAX_NO_PACKETS 3 char sendpacket[PACKET_SIZE]; char recvpacket[PACKET_SIZE]; int sockfd,datalen=56; int nsend=0,nreceived=0; struct sockaddr_in dest_addr; pid_t pid; struct sockaddr_in from; void statistics(int signo); unsigned short cal_chksum(unsigned short *addr,int len); int pack(int pack_no); void send_packet(void); void recv_packet(void); int unpack(char *buf,int len); void tv_sub(struct timeval *out,struct timeval *in); void statistics(int signo) { printf("\n--------------------PING statistics-------------------\n"); printf("%d packets transmitted, %d received , %%%d lost\n",nsend,nreceived,(nsend-nreceived)/nsend*100); close(sockfd); exit(1); } /*校驗和算法*/ unsigned short cal_chksum(unsigned short *addr,int len) { int nleft=len; int sum=0; unsigned short *w=addr; unsigned short answer=0; /*把ICMP報頭二進(jìn)制數據以2字節為單位累加起來(lái)*/ while(nleft>1) { sum+=*w++; nleft-=2; } /*若ICMP報頭為奇數個(gè)字節,會(huì )剩下最后一字節。把最后一個(gè)字節視為一個(gè)2字節數據的高字節,這個(gè)2字節數據的低字節為0,繼續累加*/ if( nleft==1) { *(unsigned char *)(&answer)=*(unsigned char *)w; sum+=answer; } sum=(sum>>16)+(sum&0xffff); sum+=(sum>>16); answer=~sum; return answer; } /*設置ICMP報頭*/ int pack(int pack_no) { int i,packsize; struct icmp *icmp; struct timeval * tval; //將sendpacket強制轉換成icmp結構 icmp = (struct icmp*)sendpacket; icmp->icmp_type = ICMP_ECHO; //設置ICMP報文類(lèi)型 icmp->icmp_code = 0; icmp->icmp_cksum = 0; icmp->icmp_seq = pack_no; icmp->icmp_id = pid; packsize = 8 + datalen; tval = (struct timeval *)icmp->icmp_data; gettimeofday(tval,NULL); icmp->icmp_cksum = cal_chksum( (unsigned short *)icmp,packsize); /*校驗算法*/ return packsize; } /*發(fā)送三個(gè)ICMP報文*/ void send_packet() { int packetsize; while( nsend < MAX_NO_PACKETS) { nsend++; packetsize = pack(nsend); /*設置ICMP報頭*/ //int sendto ( SOCKET s , const char FAR *buf , int len , int flags , const struct sockaddr FAR *to , int token ); //[參數] //s - 指向用Socket函數生成的Socket //buf - 接受數據的緩沖區(數組)的指針 //len - 緩沖區的大小 //flag - 調用方式(MSG_DONTROUTE , MSG_OOB) //to - 指向發(fā)送方SOCKET地址的指針 //token - 發(fā)送方SOCKET地址的大小 if( sendto(sockfd,sendpacket,packetsize,0,(struct sockaddr *)&dest_addr,sizeof(dest_addr) )<0 ) { perror("sendto error"); continue; } sleep(1); /*每隔一秒發(fā)送一個(gè)ICMP報文*/ } } /*接收所有ICMP報文*/ void recv_packet() { int n,fromlen; extern int errno; signal(SIGALRM,statistics); fromlen=sizeof(from); while( nreceived<nsend) { alarm(MAX_WAIT_TIME); //recvfrom()返回讀入的字節數 if( (n = recvfrom(sockfd,recvpacket,sizeof(recvpacket),0,(struct sockaddr *)&from,&fromlen)) <0) { if(errno==EINTR) continue; perror("recvfrom error"); continue; } //解讀收到的icmp包 if(unpack(recvpacket,n) == -1) continue; nreceived++; } } /*剝去ICMP報頭*/ int unpack(char *buf,int len) { int i,iphdrlen; struct ip *ip; struct icmp *icmp; ip = (struct ip *)buf; iphdrlen = ip->ip_hl << 2; /*求ip報頭長(cháng)度,即ip報頭的長(cháng)度標志乘4*/ icmp = (struct icmp *)(buf+iphdrlen); /*越過(guò)ip報頭,指向ICMP報頭*/ len -= iphdrlen; /*ICMP報頭及ICMP數據報的總長(cháng)度*/ if( len < 8) /*小于ICMP報頭長(cháng)度則不合理*/ { printf("ICMP packets\'s length is less than 8\n"); return -1; } /*確保所接收的是自己發(fā)的ICMP的回應*/ if( (icmp->icmp_type == ICMP_ECHOREPLY) && (icmp->icmp_id == pid) ) { /*顯示相關(guān)信息*/ printf("%d byte from %s: icmp_seq=%u ttl=%d \n", len, inet_ntoa(from.sin_addr), icmp->icmp_seq, ip->ip_ttl ); } else return -1; } int main(int argc,char *argv[]) { struct hostent *host; struct protoent *protocol; unsigned long int inaddr = 0; int waittime=MAX_WAIT_TIME; int size=50*1024; //檢測參數是否過(guò)少 if(argc<2) { printf("usage:%s hostname/IP address\n",argv[0]); exit(1); } //getprotobyname()返回對應于給定協(xié)議名的包含名字和協(xié)議號的protoent結構指針 //結構的成員有: //成員 用途 //p_name 正規的協(xié)議名。 //p_aliases 一個(gè)以空指針結尾的可選協(xié)議名隊列。 //p_proto 以主機字節順序排列的協(xié)議號 if( (protocol=getprotobyname("icmp") )==NULL) { perror("getprotobyname"); exit(1); } /*生成使用ICMP的原始套接字,這種套接字只有root用戶(hù)才能生成*/ if( (sockfd = socket(AF_INET,SOCK_RAW,protocol->p_proto) ) < 0) { perror("socket error"); exit(1); } /* 回收root權限,設置當前用戶(hù)權限*/ setuid(getuid()); //初始化dest_addr bzero(&dest_addr,sizeof(dest_addr)); //設置協(xié)議家族類(lèi)型為 AF_INET dest_addr.sin_family = AF_INET; /*判斷是主機名還是ip地址*/ if( inaddr = inet_addr(argv[1]) == INADDR_NONE) { //通過(guò)dns取得ip地址 if((host = gethostbyname(argv[1]) )==NULL) /*是主機名*/ { perror("gethostbyname error"); exit(1); } memcpy( (char *)&dest_addr.sin_addr,host->h_addr,host->h_length); } else { /*是ip地址*/ inaddr = inet_addr(argv[1]); memcpy( (char *)&dest_addr.sin_addr,(char *)&inaddr,sizeof(inaddr)); } /*獲取main的進(jìn)程id,用于設置ICMP的標志符*/ pid=getpid(); printf("PING %s(%s): %d bytes data in ICMP packets.\n",argv[1],inet_ntoa(dest_addr.sin_addr),datalen); send_packet(); /*發(fā)送所有ICMP報文*/ recv_packet(); /*接收所有ICMP報文*/ statistics(SIGALRM); /*進(jìn)行統計*/ return 0; }
| PING的流程在上面已經(jīng)有詳細的注釋了,我就不說(shuō)了 PING程序的主要流程分為3個(gè)步驟 1. 建立一個(gè)socket結構 ->socket 2. 用這個(gè)socket發(fā)送ICMP包 ->sendto 3. 用這個(gè)socket接收ICMP包 ->recvfrom 由于是PING本機,所以在TCP/IP協(xié)議棧中會(huì )有4個(gè)部分的內容 1. 建立socket 2. 通過(guò)socket發(fā)送ICMP包 3. 本機收到ICMP包后發(fā)送應答 4. 通過(guò)socket接收ICMP包 下面我們就來(lái)進(jìn)入TCP/IP協(xié)議棧來(lái)看看這3個(gè)系統調用如何為我們的PING程序服務(wù)的 首先是第1部分,建立一個(gè)socket結構 sockfd = socket(AF_INET,SOCK_RAW,protocol->p_proto) 這個(gè)函數會(huì )執行系統調用sys_socketcall sys_socketcall在/net/socket.c中
| asmlinkage long sys_socketcall(int call, unsigned long __user *args) { unsigned long a[6]; unsigned long a0, a1; int err;
//檢測參數的數量是否合理 if (call < 1 || call > SYS_RECVMSG) return -EINVAL; /* copy_from_user should be SMP safe. */ //從用戶(hù)空間拷貝參數到內核空間,復制在a[]數組里 if (copy_from_user(a, args, nargs[call])) return -EFAULT; //取得所要判斷的跳躍類(lèi)型 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); if (err) return err; a0 = a[0]; a1 = a[1]; switch (call) { case SYS_SOCKET: err = sys_socket(a0, a1, a[2]); break; ......................... case SYS_SENDTO: err = sys_sendto(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], a[5]); break; ............................... case SYS_RECVFROM: err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], (int __user *)a[5]); break; default: err = -EINVAL; break; } return err; }
| 上面只列出了我們所用到的3個(gè)case 現在我們的目標是case SYS_SOCKET,也就是要創(chuàng )建一個(gè)socket了 sys_socket在/net/socket.c中
| asmlinkage long sys_socket(int family, int type, int protocol) { int retval; struct socket *sock; //創(chuàng )建一個(gè)socket retval = sock_create(family, type, protocol, &sock); if (retval < 0) goto out; //將該socket映射到fd中 retval = sock_map_fd(sock); if (retval < 0) goto out_release; out: /* It may be already another descriptor 8) Not kernel problem. */ return retval; out_release: sock_release(sock); return retval; }
| 很簡(jiǎn)單的調用 sock_create在/net/socket.c中
| int sock_create(int family, int type, int protocol, struct socket **res) { return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); }
| 繼續,進(jìn)入到__sock_create中 | static int __sock_create(struct net *net, int family, int type, int protocol, struct socket **res, int kern) { int err; struct socket *sock; const struct net_proto_family *pf; /* * Check protocol is in range */ //檢測協(xié)議家族類(lèi)型是否在范圍之內 if (family < 0 || family >= NPROTO) return -EAFNOSUPPORT; //檢測協(xié)議傳輸類(lèi)型是否在范圍之內 if (type < 0 || type >= SOCK_MAX) return -EINVAL; /* Compatibility. This uglymoron is moved from INET layer to here to avoid deadlock in module load. */ //檢測協(xié)議家族類(lèi)型是否為PF_INET //檢測協(xié)議傳輸類(lèi)型是否為SOCK_PACKET if (family == PF_INET && type == SOCK_PACKET) { static int warned; if (!warned) { warned = 1; printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); } family = PF_PACKET; } err = security_socket_create(family, type, protocol, kern); if (err) return err; /* * Allocate the socket and allow the family to set things up. if * the protocol is 0, the family is instructed to select an appropriate * default. */ //分配一個(gè)socket sock = sock_alloc(); //檢測分配是否成功 if (!sock) { if (net_ratelimit()) printk(KERN_WARNING "socket: no more sockets\n"); return -ENFILE; /* Not exactly a match, but its the closest posix thing */ } //設置協(xié)議傳輸類(lèi)型 sock->type = type; #if defined(CONFIG_KMOD) /* Attempt to load a protocol module if the find failed. * * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user * requested real, full-featured networking support upon configuration. * Otherwise module support will break! */ if (net_families[family] == NULL) request_module("net-pf-%d", family); #endif rcu_read_lock(); //根據協(xié)議類(lèi)型取得對應的協(xié)議家族結構 pf = rcu_dereference(net_families[family]); err = -EAFNOSUPPORT; //檢測取得協(xié)議結構是否成功 if (!pf) goto out_release; /* * We will call the ->create function, that possibly is in a loadable * module, so we have to bump that loadable module refcnt first. */ //增加協(xié)議家族的使用計數器 if (!try_module_get(pf->owner)) goto out_release; /* Now protected by module ref count */ rcu_read_unlock(); //運行協(xié)議家族結構中的對socket初始化函數 err = pf->create(net, sock, protocol); //檢測初始化是否成功 if (err < 0) goto out_module_put; /* * Now to bump the refcnt of the [loadable] module that owns this * socket at sock_release time we decrement its refcnt. */ //增加socket所使用的協(xié)議的使用計數器 if (!try_module_get(sock->ops->owner)) goto out_module_busy; /* * Now that we're done with the ->create function, the [loadable] * module can have its refcnt decremented */ //減少協(xié)議家族使用計數器 module_put(pf->owner); err = security_socket_post_create(sock, family, type, protocol, kern); if (err) goto out_sock_release; //設置socket指針為初始化完成的socket *res = sock; return 0; out_module_busy: err = -EAFNOSUPPORT; out_module_put: sock->ops = NULL; module_put(pf->owner); out_sock_release: sock_release(sock); return err; out_release: rcu_read_unlock(); goto out_sock_release; }
| security_socket_create,關(guān)于security的內容我們都略過(guò),一來(lái)減少框架的復雜度,二來(lái)我也不知道security主要做的是啥 哈哈 不過(guò)可以肯定的是不會(huì )妨礙TCP/IP協(xié)議棧的正常運行 首先是sock_alloc sock_alloc在/net/socket.c中
| static struct socket *sock_alloc(void) { struct inode *inode; struct socket *sock; inode = new_inode(sock_mnt->mnt_sb); if (!inode) return NULL; sock = SOCKET_I(inode); inode->i_mode = S_IFSOCK | S_IRWXUGO; inode->i_uid = current->fsuid; inode->i_gid = current->fsgid; get_cpu_var(sockets_in_use)++; put_cpu_var(sockets_in_use); return sock; }
| 主要是申請一個(gè)新的socket,并對他的文件屬性進(jìn)行初始化,socket是屬于虛擬文件系統的一部分,我們暫時(shí)只要這一點(diǎn)就好了 回到__sock_create中,然后到 pf = rcu_dereference(net_families[family]); net_families的初始化我們也不分析,因為涉及的面太廣,為了緊扣PING,我們只需要知道得到了inet_family_ops這個(gè)結構就可以了,詳細的初始化部分在/net/ipv4/af_inet.c中,大家有興趣的可以看看 inet_family_ops的結構如下
| static struct net_proto_family inet_family_ops = { .family = PF_INET, .create = inet_create, .owner = THIS_MODULE, };
| 緊接著(zhù)我們就到了 err = pf->create(net, sock, protocol); 調用inet_family_ops的create函數 inet_create在/net/ipv4/af_inet.c中
| static int inet_create(struct net *net, struct socket *sock, int protocol) { struct sock *sk; struct list_head *p; struct inet_protosw *answer; struct inet_sock *inet; struct proto *answer_prot; unsigned char answer_flags; char answer_no_check; int try_loading_module = 0; int err;
//檢測socket的協(xié)議傳輸類(lèi)型是否為RAW //檢測socket的協(xié)議傳輸類(lèi)型是否為DGRAM //第三個(gè)不知道檢測的什么 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM && !inet_ehash_secret) build_ehash_secret(); //設置socket的狀態(tài)為未連接 sock->state = SS_UNCONNECTED; /* Look for the requested type/protocol pair. */ //初始化協(xié)議結構 answer = NULL; lookup_protocol: err = -ESOCKTNOSUPPORT; rcu_read_lock(); //歷遍協(xié)議族 list_for_each_rcu(p, &inetsw[sock->type]) { //取得對應的協(xié)議的結構 answer = list_entry(p, struct inet_protosw, list); /* Check the non-wild match. */ //檢測需要的協(xié)議是否和當前歷遍的協(xié)議相等 if (protocol == answer->protocol) { //檢測需要的協(xié)議是否為IP協(xié)議 if (protocol != IPPROTO_IP) //跳出循環(huán) break; } else { /* Check for the two wild cases. */ //檢測需要的協(xié)議是否為IP協(xié)議 if (IPPROTO_IP == protocol) { //設置需要的協(xié)議為當前歷遍的協(xié)議 protocol = answer->protocol; //跳出循環(huán) break; } //檢測當前歷遍的協(xié)議是否為IP協(xié)議 if (IPPROTO_IP == answer->protocol) //跳出循環(huán) break; } err = -EPROTONOSUPPORT; //設置協(xié)議結構為空 answer = NULL; } //檢測取得協(xié)議是否為空 if (unlikely(answer == NULL)) { if (try_loading_module < 2) { rcu_read_unlock(); /* * Be more specific, e.g. net-pf-2-proto-132-type-1 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) */ if (++try_loading_module == 1) request_module("net-pf-%d-proto-%d-type-%d", PF_INET, protocol, sock->type); /* * Fall back to generic, e.g. net-pf-2-proto-132 * (net-pf-PF_INET-proto-IPPROTO_SCTP) */ else request_module("net-pf-%d-proto-%d", PF_INET, protocol); goto lookup_protocol; } else goto out_rcu_unlock; } err = -EPERM; if (answer->capability > 0 && !capable(answer->capability)) goto out_rcu_unlock; err = -EAFNOSUPPORT; if (!inet_netns_ok(net, protocol)) goto out_rcu_unlock; //設置socket的協(xié)議次操作集為當前協(xié)議結構的操作集 sock->ops = answer->ops; answer_prot = answer->prot; answer_no_check = answer->no_check; answer_flags = answer->flags; rcu_read_unlock(); BUG_TRAP(answer_prot->slab != NULL); err = -ENOBUFS; //分配一個(gè)sock結構 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot); //檢測分配是否成功 if (sk == NULL) goto out; err = 0; sk->sk_no_check = answer_no_check; if (INET_PROTOSW_REUSE & answer_flags) sk->sk_reuse = 1; //將sock結構強制轉換成inet_sock結構 inet = inet_sk(sk); inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; //檢測協(xié)議傳輸類(lèi)型是否為未處理 if (SOCK_RAW == sock->type) { //設置本地端口號為協(xié)議類(lèi)型 inet->num = protocol; //檢測協(xié)議類(lèi)型是否為未處理 if (IPPROTO_RAW == protocol) inet->hdrincl = 1; } if (ipv4_config.no_pmtu_disc) inet->pmtudisc = IP_PMTUDISC_DONT; else inet->pmtudisc = IP_PMTUDISC_WANT;
inet->id = 0; //初始化sock sock_init_data(sock, sk); //設置sock的回收處理函數 sk->sk_destruct = inet_sock_destruct; //設置sock的協(xié)議家族類(lèi)型 sk->sk_family = PF_INET; //設置sock的協(xié)議類(lèi)型 sk->sk_protocol = protocol; sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; inet->uc_ttl = -1; inet->mc_loop = 1; inet->mc_ttl = 1; inet->mc_index = 0; inet->mc_list = NULL; sk_refcnt_debug_inc(sk); //檢測本地端口號是否存在 if (inet->num) { /* It assumes that any protocol which allows * the user to assign a number at socket * creation time automatically * shares. */ //設置對方端口號為本地端口號 inet->sport = htons(inet->num); /* Add to protocol hash chains. */ sk->sk_prot->hash(sk); } //檢測協(xié)議初始化函數是否存在 if (sk->sk_prot->init) { //執行協(xié)議初始化函數 err = sk->sk_prot->init(sk); if (err) sk_common_release(sk); } out: return err; out_rcu_unlock: rcu_read_unlock(); goto out; }
| inetsw結構的注冊不關(guān)心,我們看結果 answer就是其中的第二項 這里我們的protocol為IPPROTO_ICMP answer->protocol為IPPROTO_IP 所以是進(jìn)入了if (IPPROTO_IP == answer->protocol)后break跳出了循環(huán) 之后到inet_netns_ok inet_netns_ok在/net/ipv4/af_inet.c中
| static inline int inet_netns_ok(struct net *net, int protocol) { int hash; struct net_protocol *ipprot; if (net == &init_net) return 1; //取得哈希值 hash = protocol & (MAX_INET_PROTOS - 1); //取得哈希值對應的協(xié)議 ipprot = rcu_dereference(inet_protos[hash]); //檢測協(xié)議是否為空 if (ipprot == NULL) /* raw IP is OK */ return 1; return ipprot->netns_ok; }
| 由于在__sock_create中我們傳入的net類(lèi)型為init_net,所以這里是返回1,不會(huì )goto out_rcu_unlock結束的 繼續在inet_create中向下走,來(lái)到了sk_alloc sk_alloc在/net/core/sock.c中
| struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot) { struct sock *sk; //分配一個(gè)sock結構 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); //檢測分配是否成功 if (sk) { //設置協(xié)議家族類(lèi)型 sk->sk_family = family; /* * See comment in struct sock definition to understand * why we need sk_prot_creator -acme */ //設置協(xié)議主操作集 sk->sk_prot = sk->sk_prot_creator = prot; sock_lock_init(sk); sock_net_set(sk, get_net(net)); } return sk; }
| sk_prot_alloc在協(xié)議結構的高速緩存中分配一個(gè)sock結構,分配成功后進(jìn)行一些簡(jiǎn)單的初始化操作便退出了 繼續向下走,到sock_init_data sock_init_data在/net/core/sock.c中
| void sock_init_data(struct socket *sock, struct sock *sk) { //初始化skb接收隊列 skb_queue_head_init(&sk->sk_receive_queue); //初始化skb發(fā)送隊列 skb_queue_head_init(&sk->sk_write_queue); //初始化skb錯誤隊列 skb_queue_head_init(&sk->sk_error_queue); #ifdef CONFIG_NET_DMA skb_queue_head_init(&sk->sk_async_wait_queue); #endif sk->sk_send_head = NULL; init_timer(&sk->sk_timer); sk->sk_allocation = GFP_KERNEL; sk->sk_rcvbuf = sysctl_rmem_default; sk->sk_sndbuf = sysctl_wmem_default; sk->sk_state = TCP_CLOSE; //連接socket到sock sk->sk_socket = sock; sock_set_flag(sk, SOCK_ZAPPED); //檢測socket是否存在 if (sock) { //設置sock的協(xié)議傳輸類(lèi)型 sk->sk_type = sock->type; //設置sock的等待隊列 sk->sk_sleep = &sock->wait; //連接sock到socket sock->sk = sk; } else //設置sock的等待隊列為空 sk->sk_sleep = NULL; rwlock_init(&sk->sk_dst_lock); rwlock_init(&sk->sk_callback_lock); lockdep_set_class_and_name(&sk->sk_callback_lock, af_callback_keys + sk->sk_family, af_family_clock_key_strings[sk->sk_family]); //設置sock的狀態(tài)改變處理函數 sk->sk_state_change = sock_def_wakeup; //設置sock的數據準備處理函數 sk->sk_data_ready = sock_def_readable; sk->sk_write_space = sock_def_write_space; //設置sock的錯誤處理函數 sk->sk_error_report = sock_def_error_report; //設置sock的回收處理函數 sk->sk_destruct = sock_def_destruct; //發(fā)送數據的緩沖頁(yè)面 sk->sk_sndmsg_page = NULL; //發(fā)送數據的緩沖頁(yè)面偏移值 sk->sk_sndmsg_off = 0; sk->sk_peercred.pid = 0; sk->sk_peercred.uid = -1; sk->sk_peercred.gid = -1; sk->sk_write_pending = 0; sk->sk_rcvlowat = 1; sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_stamp = ktime_set(-1L, 0); atomic_set(&sk->sk_refcnt, 1); atomic_set(&sk->sk_drops, 0); }
| 這是個(gè)大家伙,負責sock結構的詳細初始化 初始化完成后繼續inet_create的執行 由于之前設置了inet->num為協(xié)議號,這里會(huì )執行sk->sk_prot->hash 在進(jìn)入這個(gè)函數之前讓我們先來(lái)看一下目前sock的結構 sk_prot為一個(gè)宏 #define sk_prot __sk_common.skc_prot 指向了raw_prot,所以sk->sk_prot->hash就是執行了raw_hash_sk raw_hash_sk在/net/ipv4/raw.c中
| void raw_hash_sk(struct sock *sk) { struct raw_hashinfo *h = sk->sk_prot->h.raw_hash; struct hlist_head *head; head = &h->ht[inet_sk(sk)->num & (RAW_HTABLE_SIZE - 1)]; write_lock_bh(&h->lock); sk_add_node(sk, head); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); write_unlock_bh(&h->lock); }
| 主要是將raw_prot連接到了socket的隊列中,如下圖 因為raw_prot是有raw_init這個(gè)函數的,所以我們進(jìn)入到sk->sk_prot->init raw_init在/net/ipv4/raw.c中
| static int raw_init(struct sock *sk) { //把sock結構強制轉換為raw_sock結構 struct raw_sock *rp = raw_sk(sk); //檢測端口號是否為ICMP if (inet_sk(sk)->num == IPPROTO_ICMP) //清空icmp_filter結構 memset(&rp->filter, 0, sizeof(rp->filter)); return 0; }
| 結構圖如下 為什么能一直這樣強制轉換下去,就不怕結構超界么? 其實(shí)這是一早有預謀的,在raw_prot中有一個(gè)成員為 .obj_size = sizeof(struct raw_sock) 而在協(xié)議中分配空間的時(shí)候就已經(jīng)分配了raw_sock所需要的空間,我們一直在用他的一部分而已 好, 到這里inet_create就完成了,一路返回到sys_socket中 執行最后一步,把初始化好的socket結構映射到一個(gè)文件描述符中,并返回這個(gè)文件描述符 這樣,我們的ping程序的sockfd就拿到了一個(gè)按要求初始化好的socket結構索引號了 在之后的sendto和recvfrom操作中就能夠使用這個(gè)索引號進(jìn)行發(fā)送和接收了 然后到第2部分,發(fā)送初始化好的icmp結構 sendto(sockfd,sendpacket,packetsize,0,(struct sockaddr *)&dest_addr,sizeof(dest_addr) 繼續來(lái)到系統調用sys_socketcall中 這次我們的目標是case SYS_SENDTO sys_sendto在/net/socket.c中
| asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, unsigned flags, struct sockaddr __user *addr, int addr_len) { struct socket *sock; char address[MAX_SOCK_ADDR]; int err; struct msghdr msg; struct iovec iov; int fput_needed; //從文件描述符中返回socket sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; //取得需要發(fā)送數據的起始地址 iov.iov_base = buff; //取得需要發(fā)送數據的數據長(cháng)度 iov.iov_len = len; msg.msg_name = NULL; //連接iov到msg msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_namelen = 0; //是否有地址參數 if (addr) { //從用戶(hù)數據轉換為內核數據 err = move_addr_to_kernel(addr, addr_len, address); if (err < 0) goto out_put; //設置地址 msg.msg_name = address; //設置地址長(cháng)度 msg.msg_namelen = addr_len; } if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; msg.msg_flags = flags; err = sock_sendmsg(sock, &msg, len); out_put: fput_light(sock->file, fput_needed); out: return err; }
| 初始化好的msg結構如下 在iovec結構中保存了我們要發(fā)送數據的首地址和大小 然后進(jìn)入到sock_sendmsg sock_sendmsg在/net/socket.c中
| int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) { struct kiocb iocb; struct sock_iocb siocb; int ret;
init_sync_kiocb(&iocb, NULL); iocb.private = &siocb; ret = __sock_sendmsg(&iocb, sock, msg, size); if (-EIOCBQUEUED == ret) ret = wait_on_sync_kiocb(&iocb); return ret; }
| 我不大明白kiocb的用處,google也不是說(shuō)得很清楚,大概就是說(shuō)關(guān)于文件同步操作方面上的,請明白的同學(xué)們指教一下 = 3=)/ 感謝 這里就不把kiocb的結構畫(huà)進(jìn)來(lái)了 然后進(jìn)入到__sock_sendmsg __sock_sendmsg在/net/socket.c中
| static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size) { struct sock_iocb *si = kiocb_to_siocb(iocb); int err;
//連接socket si->sock = sock; si->scm = NULL; //連接msg si->msg = msg; //設置需要拷貝的數據大小 si->size = size; err = security_socket_sendmsg(sock, msg, size); if (err) return err; return sock->ops->sendmsg(iocb, sock, msg, size); }
| 連接完成后的結構圖如下 sock->ops->sendmsg調用的為inet_sockraw_ops中的sendmsg操作,也就是inet_sendmsg函數 inet_sendmsg在/net/ipv4/af_inet.c中
| int inet_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size) { struct sock *sk = sock->sk; /* We may need to bind the socket. */ //檢測端口號是否存在 if (!inet_sk(sk)->num && inet_autobind(sk)) return -EAGAIN; return sk->sk_prot->sendmsg(iocb, sk, msg, size); }
| 我們在之前已經(jīng)設置了端口號,所以這里直接來(lái)到了sk->sk_prot->sendmsg sk->sk_prot->sendmsg調用的是raw_prot中的sendmsg操作,也就是raw_setsockopt函數 raw_setsockopt在/net/ipv4/raw.c中
| static int raw_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len) { struct inet_sock *inet = inet_sk(sk); struct ipcm_cookie ipc; struct rtable *rt = NULL; int free = 0; __be32 daddr; __be32 saddr; u8 tos; int err;
err = -EMSGSIZE; //檢測數據的長(cháng)度是否過(guò)長(cháng) if (len > 0xFFFF) goto out; /* * Check the flags. */ err = -EOPNOTSUPP; if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message */ goto out; /* compatibility */ /* * Get and verify the address. */ //檢測是否有目的地址 if (msg->msg_namelen) { //將地址數據格式化成sockaddr_in結構 struct sockaddr_in *usin = (struct sockaddr_in*)msg->msg_name; err = -EINVAL; //檢測地址數據長(cháng)度是否過(guò)小 if (msg->msg_namelen < sizeof(*usin)) goto out; //檢測協(xié)議家族類(lèi)型是否為AF_INET if (usin->sin_family != AF_INET) { static int complained; if (!complained++) printk(KERN_INFO "%s forgot to set AF_INET in " "raw sendmsg. Fix it!\n", current->comm); err = -EAFNOSUPPORT; //檢測是否存在協(xié)議家族類(lèi)型 if (usin->sin_family) goto out; } //取得目的地址IP daddr = usin->sin_addr.s_addr; /* ANK: I did not forget to get protocol from port field. * I just do not know, who uses this weirdness. * IP_HDRINCL is much more convenient. */ } else { err = -EDESTADDRREQ; if (sk->sk_state != TCP_ESTABLISHED) goto out; daddr = inet->daddr; } ipc.addr = inet->saddr; ipc.opt = NULL; ipc.oif = sk->sk_bound_dev_if; //檢測是否有控制信息 if (msg->msg_controllen) { err = ip_cmsg_send(sock_net(sk), msg, &ipc); if (err) goto out; if (ipc.opt) free = 1; } saddr = ipc.addr; ipc.addr = daddr; //檢測是否存在ip_options if (!ipc.opt) //無(wú)則設置為inet_sock中的ip_options ipc.opt = inet->opt; //檢測是否存在ip_options if (ipc.opt) { err = -EINVAL; /* Linux does not mangle headers on raw sockets, * so that IP options + IP_HDRINCL is non-sense. */ if (inet->hdrincl) goto done; if (ipc.opt->srr) { if (!daddr) goto done; daddr = ipc.opt->faddr; } } //取得服務(wù)類(lèi)型 tos = RT_CONN_FLAGS(sk); if (msg->msg_flags & MSG_DONTROUTE) tos |= RTO_ONLINK; //檢測是否為多播地址 if (ipv4_is_multicast(daddr)) { if (!ipc.oif) ipc.oif = inet->mc_index; if (!saddr) saddr = inet->mc_addr; } //進(jìn)行路由表查詢(xún) { struct flowi fl = { .oif = ipc.oif, .mark = sk->sk_mark, .nl_u = { .ip4_u = { .daddr = daddr, .saddr = saddr, .tos = tos } }, .proto = inet->hdrincl ? IPPROTO_RAW : sk->sk_protocol, }; if (!inet->hdrincl) { err = raw_probe_proto_opt(&fl, msg); if (err) goto done; } security_sk_classify_flow(sk, &fl); err = ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 1); } if (err) goto done; err = -EACCES; if (rt->rt_flags & RTCF_BROADCAST && !sock_flag(sk, SOCK_BROADCAST)) goto done; if (msg->msg_flags & MSG_CONFIRM) goto do_confirm; back_from_confirm: if (inet->hdrincl) { err = raw_send_hdrinc(sk, msg->msg_iov, len,rt, msg->msg_flags); } else { if (!ipc.addr) ipc.addr = rt->rt_dst; lock_sock(sk); //拷貝需要發(fā)送的數據到skb中 err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, len, 0, &ipc, rt, msg->msg_flags); //檢測拷貝是否成功 if (err) //不成功則釋放所有sock下發(fā)送隊列中所有的skb ip_flush_pending_frames(sk); else if (!(msg->msg_flags & MSG_MORE)) //發(fā)送sk中的skb err = ip_push_pending_frames(sk); release_sock(sk); } done: if (free) kfree(ipc.opt); ip_rt_put(rt); out: if (err < 0) return err; return len; do_confirm: dst_confirm(&rt->u.dst); if (!(msg->msg_flags & MSG_PROBE) || len) goto back_from_confirm; err = 0; goto done; }
| 這里最關(guān)鍵的就是 err = ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 1); 這是一個(gè)路由表查詢(xún)函數 無(wú)能為力........ 不過(guò)我根據DEBUG的信息把查詢(xún)結果畫(huà)了出來(lái),分別為ipcm_cookie和rtable兩個(gè)結構,其中最關(guān)鍵的為rtable中的dst_entry
rtable中的idev連接lo這個(gè)環(huán)回虛擬網(wǎng)卡設備 lo網(wǎng)卡的注冊在/drivers/net/loopback.c中 由于牽涉到路由表的添加問(wèn)題,我這里就不介紹他的注冊了 現在回到raw_sendmsg,進(jìn)入ip_append_data, ip_append_data負責將要發(fā)送的數據組裝到sk_buff結構中
| |
| |
|
|
|
|
|