Lucene與搜索引擎技術(shù)
TjuAILab windshow 2005.11.11
Analysis包分析
算法和數據結構分析:
由于Analysis包比較簡(jiǎn)單,不詳述了!
算法:基于機械分詞 1-gram,2-gram,HMM(如果使用ICTCLAS接口的話(huà))
數據結構:部分源碼用到了Set ,HashTable,HashMap
認真理解Token
Lucene中的Analysis包專(zhuān)門(mén)用于完成對于索引文件的分詞.Lucene中的Token是一個(gè)非常重要的概念.
看一下其源碼實(shí)現:
public final class Token {
String termText; // the text of the term
int startOffset; // start in source text
int endOffset; // end in source text
String type = "word"; // lexical type
private int positionIncrement = 1;
public Token(String text, int start, int end)
public Token(String text, int start, int end, String typ)
public void setPositionIncrement(int positionIncrement)
public int getPositionIncrement() { return positionIncrement; }
public final String termText() { return termText; }
public final int startOffset() { return startOffset; }
public void setStartOffset(int givenStartOffset)
public final int endOffset() { return endOffset; }
public void setEndOffset(int givenEndOffset)
public final String type() { return type; }
public String toString()
}
下面編一段代碼來(lái)看一下
TestToken.java
package org.apache.lucene.analysis.test;
import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import java.io.*;
public class TestToken
{
public static void main(String[] args)
{
String string = new String("我愛(ài)天大,但我更愛(ài)中國");
//Analyzer analyzer = new StandardAnalyzer();
Analyzer analyzer = new TjuChineseAnalyzer();
//Analyzer analyzer= new StopAnalyzer();
TokenStream ts = analyzer.tokenStream("dummy",new StringReader(string));
Token token;
try
{
int n=0;
while ( (token = ts.next()) != null)
{
System.out.println((n++)+"->"+token.toString());
}
}
catch(IOException ioe)
{
ioe.printStackTrace();
}
}
}注意看其結果如下所示
0->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(我,0,1,<CJK>,1)
1->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),1,2,<CJK>,1)
2->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(天,2,3,<CJK>,1)
3->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(大,3,4,<CJK>,1)
4->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(但,5,6,<CJK>,1)
5->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(我,6,7,<CJK>,1)
6->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(更,7,8,<CJK>,1)
7->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),8,9,<CJK>,1)
8->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(中,9,10,<CJK>,1)
9->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(國,10,11,<CJK>,1)
注意:其中”,”被StandardAnalyzer給過(guò)濾掉了,所以大家注意第4個(gè)Token直接startOffset從5開(kāi)始.
如果改用StopAnalyzer()
0->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(我愛(ài)天大,0,4,word,1)
1->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(但我更愛(ài)中國,5,11,word,1)
改用TjuChineseAnalyzer(我寫(xiě)的,下文會(huì )講到如何去寫(xiě))
0->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),3,4,word,1)
1->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(天大,6,8,word,1)
2->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(更,19,20,word,1)
3->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),22,23,word,1)
4->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(中國,25,27,word,1)
講明白了Token,咱們來(lái)看以下其他的東西
一個(gè)TokenStream是用來(lái)走訪(fǎng)Token的iterator(迭代器)
看一下其源代碼:
public abstract class TokenStream {
public abstract Token next() throws IOException;
public void close() throws IOException {}
}
一個(gè)Tokenizer,is-a TokenStream(派生自TokenStream),其輸入為Reader
看一下其源碼如下:
public abstract class Tokenizer extends TokenStream {
protected Reader input;
protected Tokenizer() {}
protected Tokenizer(Reader input) {
this.input = input;
}
public void close() throws IOException {
input.close();
}
}
一個(gè)TokenFilter is–a TokenStream(派生自TokenStream),其義如名就是用來(lái)完成對TokenStream的過(guò)濾操作,譬如
去StopWords,將Token變?yōu)樾?xiě)等。
源碼如下:
public abstract class TokenFilter extends TokenStream {
protected TokenStream input;
protected TokenFilter() {}
protected TokenFilter(TokenStream input) {
this.input = input;
}
public void close() throws IOException {
input.close();
}
}
一個(gè)Analyzer就是一個(gè)TokenStream工廠(chǎng)
看一下其源碼就:
public abstract class Analyzer {
public TokenStream tokenStream(String fieldName, Reader reader)
{
return tokenStream(reader);
}
public TokenStream tokenStream(Reader reader)
{
return tokenStream(null, reader);
}
}
好,現在咱們來(lái)看一下Lucene的Analysis包下面的各個(gè)類(lèi)文件都是用來(lái)干什么的。按照字典排序。
Analysis包中的源碼詳解
Analyzer.java 上文已經(jīng)講過(guò)。
CharTokenizer.java 此類(lèi)為簡(jiǎn)單一個(gè)抽象類(lèi),用來(lái)對基于字符的進(jìn)行簡(jiǎn)單分詞(tokenizer)
LetterTokenizer.java兩個(gè)非字符之間的字符串定義為token(舉例來(lái)說(shuō)英文單詞由空白隔開(kāi),那個(gè)兩個(gè)空白之間的字符串即被定義為一個(gè)token。備注:對于絕大多數歐洲語(yǔ)言來(lái)說(shuō),這個(gè)類(lèi)工作效能很好。當時(shí)對于不用空白符分割的亞洲語(yǔ)言,效能極差(譬如中日韓)。)
LowerCaseFilter.java is-a TokenFilter用于將字母小寫(xiě)化
LowerCaseTokenizer is-a Tokenizer功能上等價(jià)于LetterTokenizer+LowerCaseFilter
PerFieldAnalyzerWrapper是一個(gè)Analyzer,因為繼承自Analyzer當不同的域(Field)需要不同的語(yǔ)言分析器(Analyzer)時(shí),這個(gè)Analyzer就派上了用場(chǎng)。使用成員函數addAnalyzer可以增加一個(gè)非缺省的基于某個(gè)Field的analyzer。很少使用。
PorterStemFilter.java使用詞干抽取算法對每一個(gè)token流進(jìn)行詞干抽取。
PorterStemmer.java 有名的P-stemming算法
SimpleAnalyzer.java
StopAnalyzer.java 具有過(guò)濾停用詞的功能
StopFilter.java StopFilter為一個(gè)Filter,主要用于從token流中去除StopWords
Token.java 上面已講.
TokenFilter.java 上面已經(jīng)講了
Tokenizer.java 上面已經(jīng)講了
TokenStream.java 上面已經(jīng)講了
WhitespaceAnalyzer.java
WhitespaceTokenizer.java 只是按照space區分Token.
由于Lucene的analyisis包下的Standard包下的StandardAnalyzer()功能很強大,而且支持CJK分詞,我們簡(jiǎn)要說(shuō)一下.
此包下的文件是有StandardTokenizer.jj經(jīng)過(guò)javac命令生成的.由于是機器自動(dòng)生成的代碼,可能可讀性很差,想了解的話(huà)好好看看那個(gè)StandardTokenizer.jj文件就會(huì )比較明了了.
Lucene常用的Analyzer功能概述.
WhitespaceAnalyzer:僅僅是去除空格,對字符沒(méi)有lowcase化,不支持中文
SimpleAnalyzer:功能強于WhitespaceAnalyzer,將除去letter之外的符號全部過(guò)濾掉,并且將所有的字符lowcase化,不支持中文
StopAnalyzer:StopAnalyzer的功能超越了SimpleAnalyzer,在SimpleAnalyzer的基礎上
增加了去除StopWords的功能,不支持中文
StandardAnalyzer:英文的處理能力同于StopAnalyzer.支持中文采用的方法為單字切分.
ChineseAnalyzer:來(lái)自于Lucene的sand box.性能類(lèi)似于StandardAnalyzer,缺點(diǎn)是不支持中英文混和分詞.
CJKAnalyzer:chedong寫(xiě)的CJKAnalyzer的功能在英文處理上的功能和StandardAnalyzer相同
但是在漢語(yǔ)的分詞上,不能過(guò)濾掉標點(diǎn)符號,即使用二元切分
TjuChineseAnalyzer:我寫(xiě)的,功能最為強大.TjuChineseAnlyzer的功能相當強大,在中文分詞方面由于其調用的為ICTCLAS的java接口.所以其在中文方面性能上同與ICTCLAS.其在英文分詞上采用了Lucene的StopAnalyzer,可以去除 stopWords,而且可以不區分大小寫(xiě),過(guò)濾掉各類(lèi)標點(diǎn)符號.
各個(gè)Analyzer的功能已經(jīng)比較介紹完畢了,現在咱們應該學(xué)寫(xiě)Analyzer,如何diy自己的analyzer呢??
如何DIY一個(gè)Analyzer
咱們寫(xiě)一個(gè)Analyzer,要求有一下功能
(1) 可以處理中文和英文,對于中文實(shí)現的是單字切分,對于英文實(shí)現的是以空格切分.
(2) 對于英文部分要進(jìn)行小寫(xiě)化.
(3) 具有過(guò)濾功能,可以人工設定StopWords列表.如果不是人工設定,系統會(huì )給出默認的StopWords列表.
(4) 使用P-stemming算法對于英文部分進(jìn)行詞綴處理.
代碼如下:
public final class DiyAnalyzer
extends Analyzer
{
private Set stopWords;
public static final String[] CHINESE_ENGLISH_STOP_WORDS =
{
"a", "an", "and", "are", "as", "at", "be", "but", "by",
"for", "if", "in", "into", "is", "it",
"no", "not", "of", "on", "or", "s", "such",
"t", "that", "the", "their", "then", "there", "these",
"they", "this", "to", "was", "will", "with",
"我", "我們"
};
public DiyAnalyzer()
{
this.stopWords=StopFilter.makeStopSet(CHINESE_ENGLISH_STOP_WORDS);
}
public DiyAnalyzer(String[] stopWordList)
{
this.stopWords=StopFilter.makeStopSet(stopWordList);
}
public TokenStream tokenStream(String fieldName, Reader reader)
{
TokenStream result = new StandardTokenizer(reader);
result = new LowerCaseFilter(result);
result = new StopFilter(result, stopWords);
result = new PorterStemFilter(result);
return result;
}
public static void main(String[] args)
{
//好像英文的結束符號標點(diǎn).,StandardAnalyzer不能識別
String string = new String("我愛(ài)中國,我愛(ài)天津大學(xué)!I love China!Tianjin is a City");
Analyzer analyzer = new DiyAnalyzer();
TokenStream ts = analyzer.tokenStream("dummy", new StringReader(string));
Token token;
try
{
while ( (token = ts.next()) != null)
{
System.out.println(token.toString());
}
}
catch (IOException ioe)
{
ioe.printStackTrace();
}
}
}
可以看見(jiàn)其后的結果如下:
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),1,2,<CJK>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(中,2,3,<CJK>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(國,3,4,<CJK>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),6,7,<CJK>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(天,7,8,<CJK>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(津,8,9,<CJK>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(大,9,10,<CJK>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(學(xué),10,11,<CJK>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(i,12,13,<ALPHANUM>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(love,14,18,<ALPHANUM>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(china,19,24,<ALPHANUM>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(tianjin,25,32,<ALPHANUM>,1)
Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(citi,39,43,<ALPHANUM>,1)
到此為止這個(gè)簡(jiǎn)單的但是功能強大的分詞器就寫(xiě)完了,下面咱們可以嘗試寫(xiě)一個(gè)功能更強大的分詞器.
如何DIY一個(gè)功能更加強大Analyzer
譬如你有詞典,然后你根據正向最大匹配法或者逆向最大匹配法寫(xiě)了一個(gè)分詞方法,卻想在Lucene中應用,很簡(jiǎn)單
你只要把他們包裝成Lucene的TokenStream就好了.下邊我以調用中科院寫(xiě)的ICTCLAS接口為例,進(jìn)行演示.你去中科院
網(wǎng)站可以拿到此接口的free版本,誰(shuí)叫你沒(méi)錢(qián)呢,有錢(qián),你就可以購買(mǎi)了.哈哈
好,由于ICTCLAS進(jìn)行分詞之后,在Java中,中間會(huì )以?xún)蓚€(gè)空格隔開(kāi)!too easy,我們直接使用繼承Lucene的
WhiteSpaceTokenizer就好了.
所以TjuChineseTokenizer 看起來(lái)像是這樣.
public class TjuChineseTokenizer extends WhitespaceTokenizer
{
public TjuChineseTokenizer(Reader readerInput)
{
super(readerInput);
}
}
而TjuChineseAnalyzer看起來(lái)象是這樣
public final class TjuChineseAnalyzer
extends Analyzer
{
private Set stopWords;
/** An array containing some common English words that are not usually useful
for searching. */
/*
public static final String[] CHINESE_ENGLISH_STOP_WORDS =
{
"a", "an", "and", "are", "as", "at", "be", "but", "by",
"for", "if", "in", "into", "is", "it",
"no", "not", "of", "on", "or", "s", "such",
"t", "that", "the", "their", "then", "there", "these",
"they", "this", "to", "was", "will", "with",
"我", "我們"
};
*/
/** Builds an analyzer which removes words in ENGLISH_STOP_WORDS. */
public TjuChineseAnalyzer()
{
stopWords = StopFilter.makeStopSet(StopWords.SMART_CHINESE_ENGLISH_STOP_WORDS);
}
/** Builds an analyzer which removes words in the provided array. */
//提供獨自的stopwords
public TjuChineseAnalyzer(String[] stopWords)
{
this.stopWords = StopFilter.makeStopSet(stopWords);
}
/** Filters LowerCaseTokenizer with StopFilter. */
public TokenStream tokenStream(String fieldName, Reader reader)
{
try
{
ICTCLAS splitWord = new ICTCLAS();
String inputString = FileIO.readerToString(reader);
//分詞中間加入了空格
String resultString = splitWord.paragraphProcess(inputString);
System.out.println(resultString);
TokenStream result = new TjuChineseTokenizer(new StringReader(resultString));
result = new LowerCaseFilter(result);
//使用stopWords進(jìn)行過(guò)濾
result = new StopFilter(result, stopWords);
//使用p-stemming算法進(jìn)行過(guò)濾
result = new PorterStemFilter(result);
return result;
}
catch (IOException e)
{
System.out.println("轉換出錯");
return null;
}
}
public static void main(String[] args)
{
String string = "我愛(ài)中國人民";
Analyzer analyzer = new TjuChineseAnalyzer();
TokenStream ts = analyzer.tokenStream("dummy", new StringReader(string));
Token token;
System.out.println("Tokens:");
try
{
int n=0;
while ( (token = ts.next()) != null)
{
System.out.println((n++)+"->"+token.toString());
}
}
catch (IOException ioe)
{
ioe.printStackTrace();
}
}
}對于此程序的輸出接口可以看一下
0->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),3,4,word,1)
1->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(中國,6,8,word,1)
2->Token‘s (termText,startOffset,endOffset,type,positionIncrement) is:(人民,10,12,word,1)
OK,經(jīng)過(guò)這樣一番講解,你已經(jīng)對Lucene的Analysis包認識的比較好了,當然如果你想更加了解,還是認真讀讀源碼才好,
呵呵,源碼說(shuō)明一切!
聯(lián)系客服