YOLO目標檢測算法誕生于2015年6月,從出生的那一天起就是“高精度、高效率、高實(shí)用性”目標檢測算法的代名詞。
在原作者Joseph Redmon博士手中,YOLO經(jīng)歷了三代到YOLOv3,今年初Joseph Redmon宣告退出計算機視覺(jué)研究界后,YOLOv4、YOLOv5相繼而出,且不論誰(shuí)是正統,這YOLO算法家族在創(chuàng )始人拂袖而出后依然熱鬧非凡。本文帶領(lǐng)大家細數在此名門(mén)之中自帶“YOLO”的算法,總計 23 項工作,它們有的使YOLO更快,有的使YOLO更精準,有的擴展到了3D點(diǎn)云、水下目標檢測、有的則在FPGA、CPU、樹(shù)莓派上大顯身手,甚至還有的進(jìn)入了語(yǔ)音處理識別領(lǐng)域。而幾乎所有YOLO系算法都力圖保持高精度、高效率、高實(shí)用性,這也許就是工業(yè)界偏愛(ài)YOLO的理由吧!YOLOv1 開(kāi)山鼻祖之作
You Only Look Once: Unified, Real-Time Object Detection作者:Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi單位:華盛頓大學(xué);Allen Institute for AI;FAIR論文:https://arxiv.org/abs/1506.02640主頁(yè):https://pjreddie.com/darknet/yolo/標準版本的YOLO在Titan X 的 GPU 上能達到 45 FPS。更快的 Fast YOLO 檢測速度可以達到 155 FPS。YOLOv2
YOLO9000: Better, Faster, Stronger作者:Joseph Redmon, Ali Farhadi單位:華盛頓大學(xué);Allen Institute for AI論文:https://arxiv.org/abs/1612.08242主頁(yè):https://pjreddie.com/darknet/yolo/在 YOLO 基礎上,保持原有速度的同時(shí)提升精度得到YOLOv2,讓預測變得更準確(Better),更快速(Faster)。通過(guò)聯(lián)合訓練策略,可實(shí)現9000多種物體的實(shí)時(shí)檢測,總體mAP值為19.7。YOLOv3
YOLOv3: An Incremental Improvement作者:Joseph Redmon, Ali Farhadi論文:https://arxiv.org/abs/1804.02767主頁(yè):https://pjreddie.com/darknet/yolo/在320×320 YOLOv3運行22.2ms,28.2 mAP,像SSD一樣準確,但速度快三倍。在Titan X上,它在51 ms內實(shí)現了57.9的AP50,與RetinaNet在198 ms內的57.5 AP50相當,性能相似但速度快3.8倍。YOLOv4 目標檢測tricks集大成者
YOLOv4: Optimal Speed and Accuracy of Object Detection作者:Alexey Bochkovskiy;Chien-Yao Wang;Hong-Yuan Mark Liao論文:https://arxiv.org/pdf/2004.10934v1.pdf代碼:https://github.com/AlexeyAB/darknet在MS COCO 數據集 實(shí)現 43.5% AP (65.7% AP50 ), 速度也更快了,在Tesla V100 GPU上 ~65 FPS!
YOLOv5
2020年6月25日,Ultralytics發(fā)布了YOLOV5 的第一個(gè)正式版本,號稱(chēng)其性能與YOLO V4不相伯仲,同樣也是現今最先進(jìn)的目標檢測技術(shù),并在推理速度上是目前最強。代碼:https://github.com/ultralytics/yolov5Fast YOLO
Fast YOLO: A Fast You Only Look Once System for Real-time Embedded Object Detection in Video作者:Mohammad Javad Shafiee, Brendan Chywl, Francis Li, Alexander Wong論文:https://arxiv.org/abs/1709.05943Complex-YOLO
Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds作者:Martin Simon, Stefan Milz, Karl Amende, Horst-Michael Gross論文:https://arxiv.org/abs/1803.06199代碼:https://github.com/ghimiredhikura/Complex-YOLOv3(非官方)代碼:https://github.com/maudzung/Complex-YOLOv4-Pytorch(基于v4)基于YOLOv2的一個(gè)變種,用于點(diǎn)云3D目標檢測。MV-YOLO
MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection作者:Saeed Ranjbar Alvar, Ivan V. Baji?論文:https://arxiv.org/abs/1805.00107一種結合壓縮視頻中的運動(dòng)信息和YOLO目標檢測的目標跟蹤算法。YOLO3D
YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud作者:Waleed Ali, Sherif Abdelkarim, Mohamed Zahran, Mahmoud Zidan, Ahmad El Sallab單位:Valeo AI Research, Egypt論文:https://arxiv.org/abs/1808.02350YOLO-LITE
YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers作者:Jonathan Pedoeem, Rachel Huang論文:https://arxiv.org/abs/1811.05588代碼:https://reu2018dl.github.io/YOLO-LITE 是 YOLOv2-tiny 的Web實(shí)現,在 MS COCO 2014 和 PASCAL VOC 2007 + 2012 數據集上訓練。在 Dell XPS 13 機器上可達到 21 FPS ,VOC 數據集上達到33.57 mAP。Spiking-YOLO
Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detection作者:Seijoon Kim, Seongsik Park, Byunggook Na, Sungroh Yoon論文:https://arxiv.org/abs/1903.06530該文第一次將脈沖神經(jīng)網(wǎng)絡(luò )用于目標檢測,雖然精度不高,但相比Tiny_YOLO 耗能更少。(研究意義大于實(shí)際應用意義)DC-SPP-YOLO
DC-SPP-YOLO: Dense Connection and Spatial Pyramid Pooling Based YOLO for Object Detection作者:Zhanchao Huang, Jianlin Wang論文:https://arxiv.org/abs/1903.08589該作提出一種DC-SPP-YOLO(基于YOLO的密集連接和空間金字塔池化技術(shù))的方法來(lái)改善YOLOv2的目標檢測精度。SpeechYOLO
SpeechYOLO: Detection and Localization of Speech Objects作者:Yael Segal, Tzeviya Sylvia Fuchs, Joseph Keshet論文:https://arxiv.org/abs/1904.07704YOLO算法啟發(fā)的語(yǔ)音處理識別算法。SpeechYOLO的目標是在輸入信號中定位語(yǔ)句的邊界,并對其進(jìn)行正確分類(lèi)。受YOLO算法在圖像中進(jìn)行目標檢測的啟發(fā)所提出的方法。Complexer-YOLO
Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds作者:Martin Simon, Karl Amende, Andrea Kraus, Jens Honer, Timo S?mann, Hauke Kaulbersch, Stefan Milz, Horst Michael Gross論文:https://arxiv.org/abs/1904.07537Complex-YOLO的改進(jìn)版,用于實(shí)時(shí)點(diǎn)云3D目標檢測與跟蹤,推斷速度加速20%,訓練時(shí)間減少50%。SlimYOLOv3
SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications作者:Pengyi Zhang, Yunxin Zhong, Xiaoqiong Li論文:https://arxiv.org/abs/1907.11093代碼:https://github.com/PengyiZhang/SlimYOLOv3該文對YOLOv3的卷積層通道剪枝,大幅削減了模型的計算量(~90.8% decrease of FLOPs)和參數量( ~92.0% decline of parameter size),剪枝后的模型在基本保持原模型的檢測精度同時(shí),運行速度約為原來(lái)的兩倍。REQ-YOLO
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs作者:Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi Wang, Yun Liang單位:北大;東北大學(xué);鵬城實(shí)驗室論文:https://arxiv.org/abs/1909.13396Tiny-YOLO的 FPGA 實(shí)現,REQ-YOLO速度可高達200~300 FPS!YOLO Nano
YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection作者:Alexander Wong, Mahmoud Famuori, Mohammad Javad Shafiee, Francis Li, Brendan Chwyl, Jonathan Chung單位:滑鐵盧大學(xué);DarwinAI Corp論文:https://arxiv.org/abs/1910.01271YOLO Nano 比 Tiny YOLOv2 和 Tiny YOLOv3更小,更快,mAP更高!模型僅4.0MB。在 NVIDIA Jetson Xavier上速度竟高達26.9~48.2 FPS!xYOLO
xYOLO: A Model For Real-Time Object Detection In Humanoid Soccer On Low-End Hardware作者:Daniel Barry, Munir Shah, Merel Keijsers, Humayun Khan, Banon Hopman論文:https://arxiv.org/abs/1910.03159該工作所提出的 xYOLO 是從 YOLO v3 tiny 變化而來(lái),xYOLO比Tiny-YOLO快了70倍!在樹(shù)莓派3B上速度9.66 FPS!模型僅0.82 MB大小,這可能是速度最快模型最小的YOLO變種。IFQ-Tinier-YOLO
IFQ-Net: Integrated Fixed-point Quantization Networks for Embedded Vision作者:Hongxing Gao, Wei Tao, Dongchao Wen, Tse-Wei Chen, Kinya Osa, Masami Kato單位:Canon Information Technology (Beijing) Co., LTD;Device Technology Development Headquarters, Canon Inc.論文:https://arxiv.org/abs/1911.08076該工作一部分基于YOLOv2,設計了IFQ-Tinier-YOLO人臉檢測器,它是一個(gè)定點(diǎn)網(wǎng)絡(luò ),比Tiny-YOLO減少了256倍的模型大?。?46k Bytes)。DG-YOLO
WQT and DG-YOLO: towards domain generalization in underwater object detection作者:Hong Liu, Pinhao Song, Runwei Ding論文:https://arxiv.org/abs/2004.06333該工作旨在研究水下目標檢測數據,因為水下目標的數據比較少,提出了新的水質(zhì)遷移的數據增廣方法和YOLO新變種:DG-YOLO ,該算法由 YOLOv3, DIM 和 IRM penalty 組成。Poly-YOLO
Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3作者:Petr Hurtik, Vojtech Molek, Jan Hula, Marek Vajgl, Pavel Vlasanek, Tomas Nejezchleba單位:奧斯特拉發(fā)大學(xué);Varroc Lighting Systems論文:https://arxiv.org/abs/2005.13243代碼:https://gitlab.com/irafm-ai/poly-yolo基于YOLOv3,支持實(shí)例分割,檢測mAP提升40%!E-YOLO
Expandable YOLO: 3D Object Detection from RGB-D Images作者:Masahiro Takahashi, Alessandro Moro, Yonghoon Ji, Kazunori Umeda單位:(日本)中央大學(xué);RITECS Inc論文:https://arxiv.org/abs/2006.14837YOLOv3的變種,構建了一個(gè)輕量級的目標檢測器,從RGBD-D立體攝像機輸入深度和彩色圖像。該模型的處理速度為44.35fps(GPU: NVIDIA RTX 2080 and CPU: Intel Core i7 8700K)。PP-YOLO
PP-YOLO: An Effective and Efficient Implementation of Object Detector作者:Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang, Qingqing Dang, Yuan Gao, Hui Shen, Jianguo Ren, Shumin Han, Errui Ding, Shilei Wen
本站僅提供存儲服務(wù),所有內容均由用戶(hù)發(fā)布,如發(fā)現有害或侵權內容,請
點(diǎn)擊舉報。