題目:給兩個(gè)字符串S和T,判斷T在S中出現的次數。
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Here is an example:
S = "rabbbit", T = "rabbit"
Return 3.
-----------------------------------------------------
思路1:遞歸(TLE)如果當前字符相同,結果加上S和T在該index之后的匹配方法數
如果當前字符不同,將S的指針向后移,遞歸計算
- class Solution {
- private:
- int cnt;
- int len_s;
- int len_t;
- public:
- Solution():cnt(0){}
- void Count(string S,string T, int idx_ss, int idx_ts){
- if(idx_ts == len_t){
- cnt++;
- return;
- }
- int i,j,k;
- for (i=idx_ss; i<len_s; i++) {
- if (S[i] == T[idx_ts]) {
- Count(S, T, i + 1, idx_ts + 1);
- }
- }
- }
-
- int numDistinct(string S, string T) {
- len_s = S.length();
- len_t = T.length();
- Count(S, T, 0, 0);
- return cnt;
- }
- };
-----------------------------------------------------
思路2:DP
如果當前字符相同,dp[i][j]結果等于用S[i](dp[i-1][j-1])和不用S[i](dp[i-1][j])方法數求和
如果當前字符不同,dp[i][j] = dp[i-1][j]
- class Solution {
- private:
- int len_s;
- int len_t;
- public:
- int Count(string S,string T){
- int i,j;
- int dp[len_s][len_t];
- memset(dp, 0, sizeof(dp));
-
- if (S[0]==T[0]) {
- dp[0][0] = 1;
- }
-
- for(i=1;i<len_s;i++){
- dp[i][0] = dp[i-1][0];
- if (T[0]==S[i]) {
- dp[i][0]++;
- }
- }
-
- for (i=1; i<len_s; i++) {
- for (j=1; j<len_t && j<=i; j++) {
- if (S[i]!=T[j]) {
- dp[i][j] = dp[i-1][j];
- //cout<<dp[i-1][j]<<endl;
- }
- else{
- dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
- //dp[i-1][j-1]: use S[i], as S[i]==T[j]
- //dp[i-1][j] : don't use S[i]
- //cout<<dp[i][j]<<endl;
- }
- }
- }
- return dp[len_s-1][len_t-1];
- }
-
- int numDistinct(string S, string T) {
- len_s = S.length();
- len_t = T.length();
- return Count(S, T);
- }
- };
本站僅提供存儲服務(wù),所有內容均由用戶(hù)發(fā)布,如發(fā)現有害或侵權內容,請
點(diǎn)擊舉報。